By Frederick Stallings People start and end their day on their mobile phones. We share photos on them. We tweet on them. And we carry them everywhere: in our pockets, bags, or simply in the palm of our hands. Mobile is now taking on television. We spend more time chatting, texting and surfing on our mobiles each day than we do pinned to the sofa absorbed by the boob tube, according to a recent study from Millard Brown. Possibilities not remote In a sense, our mobile phones are the remote controls of our lives, and rich data about location, social activity, and personal habits is constantly being generated. It is the kind of intelligence that TV and online ad buyers would love to get their hands on to improve the accuracy of their ad purchasing and targeting and ensure that their ads are being delivered in the manner and at the moment that they will be most welcomed. And that is why technologists are working overtime to figure out a way to make the link and create more advertising value for mobile devices. But what I am really curious about is what happens after the connection is made. In other words, if we could access mobile data to inform other-screen buying, what would that look like? In what ways could the small screen make bigger screen experiences better? Let us walk through a hypothetical. You go into your favorite shoe store looking for boots. Technology embedded in your phone such as Apple’s iBeacon or Qualcomm’s Gimbal picks up precisely where you are standing in the store. That information is collected and relayed so that brands can send you hyper-targeted, location-based messages, such as letting you know that the boots in the next aisle are on sale. Pretty cool. But that is where the dialogue ends right now. Taking the right steps What if brands could keep the conversation going? So when you get home and hop on your tablet or laptop, an offer for those boots you were eyeing would show up, along with an interactive catalog of sizes and colors. How about TV? Using mobile data to inform TV ad buying is a little – OK, a lot – more complicated. Let us take it step by step: Step #1: The shoe brand collects the location and user-input data generated by your mobile device in the shoe store and other potentially valuable inputs. Step #2: That information is organized into a profile of all of your characteristics: age, race, location, income level, gender and traffic patterns. Step #3: Your profile is matched to similar profiles that are grouped together in a micro-segment. Step #4: The shoe brand accesses set-top box data about the TV viewing habits of your micro-segment. Step #5: The shoe brand uses that data to buy ad time within the TV shows most popular with your micro-segment. Meaning that the shoe brand may discover that people with a profile similar to yours love blacklist and choose to buy ads in that show to give the brand the best chance of reaching in-market consumers. THIS AMAZING link between mobile data about physical movements and interactions to other-screen advertising is just starting to intrigue marketers. Clearly, this will be an immense opportunity for advertisers to deepen one-to-one connections with consumers, and deliver ads to the people who are already thinking about their or their competitor’s products. You could say that advertisers will get the chance, for the first time, to get off on the right foot with the right audience. Frederick Stallings is senior director for mobile product strategy at Collective, New York. Reach him at fstallings@collective.com.
What if mobile could make TV buying smarter?
Posted By an American Marketer columnist On In Columns,Featured,Opinion | No Comments
Frederick Stallings is senior director for mobile product strategy at Collective
{"ct":"Z8ZFl7T0tKAucEO9xzDofmKj17JodIwpKxWM8VAiFMTsWBMdO3XNIduc8abdUhF2b1DyubbAPEU6X\/PlDiO6VaYo5qDg6Dhq3IADPqZJnfHR7BSMKBXZtpllchpFWAHeL041R2wTQL+5LXRJZW9xlAu\/1bYweXT17nQXAi2zjTgXvWOuRpn+EFjvECrmyV7UT25wIY7qmywUpUbKIbaePt14kRUt5cyalylc2cOSlw0I66QGptg\/VTBTIlJwhXVrBaK48ERx8cLytdoFJjC94iTna4F46SZGmpjaTPSx8GgjBHAg1ER0C8Qv48l+YtoTMjEVk8HtaYrHMDprycSyVt96pGzFNW9qP75NXj59wO\/5UmYlZ\/14GvrBmebwksauETXpZvBXHozBrC5CT9qi8aWh4K+MJoLv7awkM3DlAKbauqxxZ+tSy0keglwRnAhkdcaCzh2kosfsMeApICY56eCfoFemUQ9Ft3SAZMDIa6TTmePxABQ9wQXzSM3k0G494xEKIRQygSqii7eQzXl5v6ehq6PasGRiDvH2\/JIVr0TZZHwOPnW1e\/D+DFBe9uzYl64WYeyOBZ97T09tvQB2RAbKvz3Vd\/ETWLZa4P9Ghya7zXqEe\/FHfZ4pSWdvAyCS\/NVh\/Q+8FlfZCo45mUBl0RH0Q8afZ9CKzXXqtUkojADHBPdaDyFDtaeNJmTnx6ym2GUseGGJ4uYMi\/6qfXBvTdMjq9AlZKTPof09wtRwR8iPTdF8rqbL+aMaCin8yXh+KisXE9\/KzTQD3eDanS+eMXq\/EPbgBSV1TwQJaXfBl7ZzTjpLb9iV1NHQn9MQc4S+Kuax0Tf09R4CUjxHeeqhIgnU3cLItD9QEfWEOUM3qEqlOZa+DKjljyq6Cp5MGMSjZNtX\/coY5tpuWz0Bh3SBShIXLAOY4DAjt2FngdCKqD0MB7ZYnd8S4ebk5Dk4DTdzJb\/UZhQLY\/4NSwUXo2YuhCPwv2Gyoe6bbYicC+PNQsmPS2nnn5K2pprTgmZtx\/hXBdQ31BPsPgq2uDT4B5YdKRmpCkVcx1j82zTJnO9g11mqqGDualycMe0U+dmkI5MQav4dBYTvCVusrFjtLALS9Ic6DIQqclEmH823JJYebMCCPpX5AC47uyy2GNZ1jjCE60z0NB1RpKm2OiCsuaWHwMyBGbTtcSE\/CRMi5qm+jVEeaNoFDCcfz6F\/PnPldWMD34tOlZGdF3SjxMU\/XoRTiWfELY+DVpxgzVy6OZ7DO0CV1fsnKTZOeJokJ8FLv5pL2LPoz8P0LLPfD6E2JpaLk1B6NwZk04FNtPCWVgYqGcRsQXfq+nZIcxHkD318KWLEPLdw6P2Tmc9AOkYZ+JGFLPbLplry9KCtt3754MjnZ8e1o+ziyfQVhyQB2f8HkN3t84xI\/aFj99SEOpuEp+Rtdi3fbWgrn1xeQ\/l2g1hFHqdrHhNhUwewy2ajezuMVF5wpPym2Papu2iksGrYO8p8UJnKZ53zSSqD1snIUsO\/wwTcd5\/VOR6uoFP8BENqkzHE8A3W+JC9j\/LfmdkUNsj37zU0Uk0kHdKjEcnqR10\/270HUNCYMlPS4TQRpcdopUx3sFdtEfkWuZz4yRa9aBksLxALH07eXhcTy0KZAUs6egvh0fNCHqRirs9Pa+YyQPsXIMA3GP9uAFhiARwtXrguUYrBpXrxZLWt3T3P\/EHbMYFn9vr+2hU5n8z4+O4uL+0Co\/xbOAmg9BjWIrOzfyGZUkz\/u2bJzDuAVRcKFm99Mu0qz0GscO9TZJFNwsqsRtE84O46VrT0kBIYfW+l7GXlydP5Fiih7FXTaFWatJ5WFZl\/815ZmQqCtx9jEnoZv9aJn59WJlBaBPtitt8KT8+4D3+suFE2ip2xHjL76\/oe4fddPuGzlt9ZXBEvrVHoibClbFJOaTwoxtrMAFjgqtpvyXHqFKoM3F3t03dAya\/7lYMltUwBS9qzZhRQEVy7aeizpziC7lyt1fvhYKhd97i3x\/ToUKWIj0U5yssuZgehvy+waQw1R7wf9T1E8udgG9froG5gbvKyVn3hF8gXJo3QmcPznxi1pZGRxL2XbrYOj0XbjXiEQ+JzMGvYKAQ8h6pLNiobKkIk2Lv8+Ja3gLZZFtApcXdsrWjUh9rfTRLjK+t8agCRazpOuEgFHvCh2Deq35nDQ7cGRooEwuyi\/H3sIlTwRPFL2yRjWCbg0Iy2b+MwRaUzk1r\/FXyF7euaZnc+lPnvJauT+iZLu2rJHI6RnHzRFu0N\/zXzBaAnREAJmhNXGEcfnss5eMy+dF\/Ksxs8hSnd7xUYOtP\/4G35y6dNw5LlrSiAm59eRmUDWCRM67h5owZByc1zNjiPvbyQMhJ1bQTCnjXcmNKvFdw3Iw87wyJ2t7Zsf8hDMiCgTHNx8nhM9HXNCi7jFEk55jVm61d078Y0H8OrERF8Py\/wnFwll1lUtHiqu5dhl8gc\/K2wXZ74ebANHi0N8KZa+tGxST5pSn7IHGvzNL5BP7d98SRE6uE8h\/5VCYNdw6ztKgO+CcfScd5hSQmueK6EjVEXaoeeDPiZXdT5ji9ZWp9uaRwLK6MPM8gmregCfvJlOOn59Zs1c\/WtqD1yn6VTcCqPUGtDgc8dPlZm7PwmgeZV82d8H1u9xbd6iWdeE3UK9qus2LgyRz0rnwQwpovrdBwm0A0kkblgU29uhia0a3lOudzGrSs74pdSkGnrzCLwSa0N44Jk\/xwd6GiuWcYFKG4wkzgS\/w+UmshehvtO6IJ6Bz00SaNTM+fTNkc\/7V\/N5D73dxUjQxesaVp2mJ5kFt1aNYTunijC20CQ8B4ligp7QiGjuyB4D3+Vgs+Fq\/xaB5dJY1Jo4yv3LnlPmb2Mq9MZwt5R3mTM663s8G9GeMQrtrWXOWutheP6JA5xAkIATDHx3LlVMEvNRw1cDmS+L62kYeEvEmj5c9DMIaRIsqYGUQrkks6KM2ZIliw46QOl2TeiU2ggGLLV9oX5cS7RxyKyBbbUMDhbqkSXeroYoTKZCjC81xxp30fz3ietETloGnA4KH\/h7Oqfj\/Gjl6lJjYdeS5xbKEpDUWB+FKdpH44AuQRu8f9ESBRbqLHpJZnKS2arl4nbK2\/ZVY8zyTSL\/hBCrs3xlduDt\/9e55QjpRGgTCmBpCq\/h+YkYe8ykGkhUCpQyNedL6OgtEi0RgRKGgN5BoO7kSSYDQ+X6GlbV7r8kCwYUjLnF4DGvryyVx9SkpfCPlhWMDRlJOTj+wff+5vwUe4w3G99d+PwCsUdclnIaQrrCdKefd2GS7f9XYqARtsCBEWkWKvdarVFfijm2hyBIcDw1ikM\/hRVj\/4lA6ZcP7F4ICCvOMu0H6XzlNt\/Es16adFLKUgISdDGBNPUy65Prnaje1x7m2Qq4CLE7letCmT4mMAjHiSWeCdI3W7MEm7ck77AIIOeR5ovC1s\/56uFIHXr1+r8\/KXxHXI2UHH+yeZU0xo7pSt4N7UXPSLaY1F\/tGBaUGz3JH\/8ugsx0bxQt9NzoDWraCCX0d3CocJxpMy5VNgUxBRrF5vgrJaZOMPED2AJJMKRRqqthgcGtfUhFo+ITTH2isB7IbwfpWHXKrd+74d7DpNCSjF4Ij0ApgY79PtIh5Is6u1tforhxr68oNMgcA2a23pYaW\/Kf5cUNjgAfdcCf3IoM5ITfBATLBt45hVraPYzsk632kCsWK7LuFtlESLQQO6Go0MtU9z+z333Wvnaz2w0+LhesfDj\/hq3pQYYeiZP3BMPSUmIZtHsotw2+supLWGo7qpAyCuAKD27xyoJKilh022I1qv5ZRCf8jxq6p6zGYptujiTxrue58QTW6OH7n\/KdLpDE3di0Vbyxi3VM9fWRoLxnYpLuXkS4v5uealw6zjcBs0+aUFBL6zVDkH2\/YQ0pyI\/gUhTBAFjIxqFvn+sy2ZhhliMEnr5U\/+AyOrJjC0wGpyxyRFMaP5VKLfozvMVJc1MYXnY7UkuwecG4xwS3bd0V4M6mwVJXzkAf\/NDdow0wSs7M1NID5MZiBelzJ69adUpCy\/C6XF0XpRdxPyAc27GUQFB1MwT0t+Vl8Wr+rVQMK6KCLmoCI7l+BvWkwdSzgoY6X2YetXNodYyr4iTyh3xZOI2sWR4lADBcd+sdSd0AbDrwHTbRy5yXXjMAgbeacTnEX1f0BwVkTOdLcj9gK0pYvOHIMCfuEAvUxBql7TQ4r0XN6FqNJLyRdYTIxvgH4yzLu7pteJI0wBb2Ghn5bZzOq9mKDq0tW6kqHgzdJ1v\/DozbXuz1+4JBRMjrKVrRRxKM3BankEx1nYSCduVIcxXEDy5ficNbJgSycNMJkU+MhI19XEINarU+ckA+3M3rGDrq1ZTJJvwdQtbl2mC1k2pflyCJY+ONv8pDngJ+aiNTnThGn3hbGz04RxOWDoJBz7IHDhOuaZCcY+6OHW8LdVM18KPVKKnjDh1ewN7uQD6EJ\/RA0X625JodWD3AHavr6XiaU4Clh0Znc9s\/pLK9DoSzSbDGqBhQfX5tUcVdUzLouF3AaTPmcktR1c7uTvbq1D1lwpoxq11bz64MxM+RQMEHN+6\/y2kZIBK3jpqBy41Hp1alSPL3GFbsG1YahlPUlJdz8glqkUOKOVkmaMvQrNaQDuJT5GuPKIg9SencqCpbyyZhhQ2vhw+FuH8QGYIkAKVCna6ycCQrcxQqX9LCroaI\/Q8TxOlgkNli61jB0jySaYSHFtVUdoac8AVyoJSsepnwk8nNbtCerjZ1Mz1iUjHcN\/GG5AeGHfWzO60cVvM2s3hTQo13iFmJBPFGpRvmI8iEnuSkDb9AjKN3Ml3JMZGQrdYxsU\/7iww+ruBAC5z5XAjZmozNSEdghUFFGGs9n2jR2bhlCmdDLRoD4zrJS989p3HsUkiuUsXQCUeJz9320pqB0FNJjElUSFD4w4CuzucM9k4NcVU\/FiExTdbphSVmSPoagaERPOwbDtAm3SAACV3Dibmdc\/urNVq\/yCOpdMWCvLDSc7ezS1bCkGpr90dY1JdsCpN7rc4XrZILSIZ0VN0\/Y3ZZ+vx+4KFC3NEXdvX6ntQP+pPBzbyYtQdk31R7wGNJP87LUktHcbZIIbeuc67AmIpdX2Z\/iGcboNc1Gs6xNzhlreIk1We1BqNH1WjaSBTMTxCdQVrq6SWC6Cc9mWtvugOlUGUo8mVWq2u5FLjMWO97+8M970+nRF2JwoagKvcBssKZx\/yYjm1gJM0EQM7NgcicG8v","iv":"ce689d90f6a6a3d24d43cd69da4c2413","s":"3d7401c446577b74"}